Review

High-intensity interval training in patients with coronary heart disease: Prescription models and perspectives

Paula A.B. Ribeiro^{a,b,c}, Maxime Boidin^{a,b,d}, Martin Juneau^{a,b,c}, Anil Nigam^{a,b,c}, Mathieu Gayda^{a,b,c,*}

^aCardiovascular and Prevention and Rehabilitation Centre (E´PIC), Montreal Heart Institute, University of Montreal, Montreal, Quebec, Canada
^bResearch Center, Montreal Heart Institute, University of Montreal, Montreal, Quebec, Canada
^cDepartment of Medicine, University of Montreal, Montreal, Quebec, Canada
^dDepartment of Kinesiology, University of Montreal, Montreal, Quebec, Canada

A R T I C L E I N F O

Article history:
Received 27 January 2016
Accepted 9 April 2016

Keywords:
High-intensity interval training
Continuous aerobic exercise training
Exercise prescription
Coronary heart disease

A B S T R A C T

Recently, high-intensity interval training (HIIT) has emerged as an alternative and/or complementary exercise modality to continuous aerobic exercise training (CAET) in CHD patients. However, the literature contains descriptions of many HIIT protocols with different stage durations, nature of recovery and intensities. In this review, we discuss the most recent forms of validated HIIT protocols in patients with coronary heart disease (CHD) and how to prescribe and use them during short- and long-term (phase II and III) cardiac rehabilitation programs. We also compare the superior and/or equivalent short- and long-term effects of HIIT versus CAET on aerobic fitness, cardiovascular function, and quality of life; their efficiency, safety, and tolerance; and exercise adherence. Short interval HIIT was found beneficial for CHD patients with lower aerobic fitness and would ideally be used in initiation and improvement stages. Medium and/or long interval HIIT protocols may be beneficial for CHD patients with higher aerobic fitness, and would be ideally used in the improvement and maintenance stages because of their high physiological stimulus. Finally, we propose progressive individualized models of HIIT programs (phase II to III) for patients with CHD and how to ideally use them according to the clinical status of patients and phase of the cardiac rehabilitation program.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

Older adults represented 13% of the total Canadian population in 2005 and will represent an estimated 24% in 2036 [1]. They represented 19% of the total population in France in 2015 and the proportion is still growing [2]. Aging is associated with increased risk of cardiovascular diseases such as coronary heart disease (CHD) [3]. Cardiovascular diseases are among the leading causes of death today in Canada (29%) and in the world (30%) and can lead to $20 billion/year costs in physician services, hospital costs, lost wages and decreased productivity [3,4] and approximately €196 billion/year in the European Union (€106 billion in healthcare, €44 billion [22%] in informal care, €27 billion [14%] in early mortality and €19 billion in absence from work or early retirement) [5].

Maximal aerobic power (V˙O_{2max}) is an independent predictor of mortality and morbidity in CHD patients [6]. Therefore, cardiac rehabilitation programs with an exercise training component such as continuous aerobic exercise training (CAET) were found to be safe and to improve prognosis in CHD patients [7–11]. The additional clinical benefits of exercise training in CHD patients are well documented and include improvements in cardiovascular, lung and skeletal muscle functions, endurance, quality of life, inflammation, depressive symptoms, stress and cognitive functions [12,13]. Therefore, exercise training such as CAET is now a cornerstone of the non-pharmacological treatment of patients with CHD and is integrated into the North American and European guidelines [12–15].

Recently, a strong clinical interest has emerged in high-intensity interval training (HIIT) in patients with CHD, first mentioned in the American Heart Association recommendations for exercise prescription in 2007 [12]. Actually, HIIT is increasingly being mentioned as an exercise modality in the most recent North American and European guidelines for CHD patients [12–14].
2. CAET for cardiac patients

CAET is still the cornerstone of exercise training programs for CHD patients and is largely recommended worldwide [12–14,16]. The program improves prognosis, is safe and feasible and has almost no contra-indications for most patients with stable CHD [12–14,16]. CAET programs have shown good short- and long-term clinical benefits, including reduced mortality and/or morbidity [7–10,17–21], improved VO₂peak and ventilatory function, relieved clinical symptoms (dyspnea, sleep disorders and depressive symptoms), controlled dyslipidemia, and reduced endothelial and cardiac dysfunction [12–14,16]. The main goal of CAET is to perform longer exercise periods in steady-state, which favours oxidative metabolism. For beginners, walking programs remain the most prescribed modality for CHD patients because of the advantages: walking is safe, appropriate for starting exercising, needs no or little supervision and can be performed anywhere (indoors or outdoors). Exercise modalities for CAET include mostly walking, running, cycling, Nordic walking, rowing, swimming, stepping and stairs climbing [12–14,16]. In general, CAET leads to higher fat oxidation and longer exercising bouts at intensities from 40% to 50% VO₂peak for beginners with low physical function/greater cardiac risk (i.e., CHD patients) and 50% to 75% VO₂peak for CHD patients with higher fitness level or less cardiac risk [12–14,16].

Traditionally, the exercise intensity for CAET is prescribed using percentage maximal heart rate (%HRmax), heart rate reserve (%HRR) and peak power output (%PPO) and patient’s rate of perceived exertion (RPE) (Borg scale: 6–20), with considerable success [12–14,16]. The exercise intensity zones for CAET are usually classified as follows (see review [15] for details): light- to moderate-intensity zone (40–50% VO₂peak, RPE: 11–12) and moderate- to high-intensity zone (50–75% of VO₂peak, RPE: 12–15). These zones must be mainly considered with phase II (initiation-improvement) and III (maintenance) cardiac rehabilitation (see progression models in Table 1). Exercise prescription based on the intensity of the ventilatory threshold, measured during maximal cardiopulmonary exercise test, is also often used for CHD patients, especially those receiving beta-blockers, and corresponds to 50% to 60% VO₂peak (initial moderate-zone intensity) [13].

3. General principles of HIIT and exercise training implementation for CHD patients

In this section, we review the general principles of HIIT prescription adapted to CHD patients and its place in the context of exercise training implementation. In a second section, we review the available studies comparing HIIT to CAET for CHD patients, an important topic in recent years (Table 2). Finally, we propose a guide for HIIT prescription and implementation combined with CAET for CHD patients (Table 1).

The main principle of HIIT is to perform brief periods of high-intensity exercise (e.g. > 85% VO₂peak or PPO), interspersed with periods of low-intensity exercise or passive rest, to allow patients to accumulate greater time at a higher-intensity than they would otherwise perform with continuous exercise [22,23]. In CHD patients, HIIT can be considered a time-efficient substitute and/or alternative to traditional continuous exercise training [22,23]. Different HIIT protocols (intensity, stage duration, nature of recovery, number of intervals) have been tested and used for CHD patients (see reviews [22,23] for details and Table 2 for protocols). Three different categories of HIIT have been described for CHD patients:

- long intervals: 3 to 15 min at 85% to 90% VO₂peak
- medium intervals: 1 to 3 min at 95% to 100% VO₂peak
- short intervals: 10 sec to 1 min at 100% to 120% VO₂peak [22,23].

Furthermore, HIIT can be performed with different exercise modes such as cycling, running, walking with inclination, rowing, swimming or other activities. Exercise intensity is generally determined with % VO₂peak, %HRmax, percentage maximal aerobic power, percentage maximal short exercise capacity or RPE (Borg scale) [22,23]. The HIIT choice in terms of exercise intensity, duration of intervals and use of active or passive recovery has a profound effect on acute physiological responses, exercise tolerance and RPE for CHD patients [22,23].

3.1. HIIT with short intervals

The acute physiological responses to different HIIT with short interval protocols have been studied in patients with CHD [22–26]. Our group investigated an optimal protocol that would allow CHD patients to spend more time near the VO₂peak values and exercise for a longer total time with less feeling of fatigue and dyspnea [24–26]. We compared the acute cardiovascular responses...
Table 2
Study characteristics of randomized clinical trials comparing HIIT and CAET for patients with CHD.

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>No. of randomized patients (HIIT/CAET)</th>
<th>Intervention (frequency/duration)</th>
<th>HIIT (intensity/duration)</th>
<th>CAET (intensity/duration)</th>
<th>Cardiovascular AEs (HIIT/CAET)</th>
<th>Other AEs, dropouts/losses and compliance (HIIT/CAET)</th>
<th>Delta of main effects (HIIT vs. CAET)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rognmo et al. (2004)</td>
<td>11/10</td>
<td>F: 3 × week D: 10 weeks</td>
<td>I: 4 × 4 min 80–90% VO\textsubscript{2peak} Rec: 3 × 3 min at 50–60% VO\textsubscript{2peak} D: 25 min</td>
<td>I: 50–60% VO\textsubscript{2peak} D: 41 min</td>
<td>0/0</td>
<td>HIIT: ankle fracture; lack of motivation; poor adherence. CAET: knee injury. Compliance: Compliance of 70% was set as criteria for completing the study, but data not shown</td>
<td>VO\textsubscript{2peak}: 19% vs. 8% No effect on BP</td>
</tr>
<tr>
<td>Warburton et al. (2005)</td>
<td>7/7</td>
<td>F: 2 × week D: 16 weeks</td>
<td>I: 2 min intervals: 85–95% HR/VO\textsubscript{2} reserve Rec: 35–45% HR/VO\textsubscript{2} reserve D: 30 min</td>
<td>I: 65% HR/VO\textsubscript{2} reserve D: 30 min</td>
<td>0/0</td>
<td>Compliance: HIIT: 98.5%; CAET: 98.8%</td>
<td>VO\textsubscript{2peak}: 15% vs. 13% AT: 32% vs. 10%</td>
</tr>
<tr>
<td>Moholdt et al. (2009)</td>
<td>33/36</td>
<td>F: 5 × week D: 4 weeks</td>
<td>I: 4 × 4 min at 90% HR\textsubscript{peak} Rec: 3 × 70% HR\textsubscript{peak} D: 25 min</td>
<td>I: 70% HR\textsubscript{peak} D: 30 min</td>
<td>0/0</td>
<td>HIIT: 1 leg pain, 1 hip pain, 1 bronchitis and 1 withdrawal CAET: 2 hospitalizations, 1 low adherence, 1 withdrawal and 1 large pericardial effusion. Compliance: data not shown for 4 weeks</td>
<td>VO\textsubscript{2peak}: 12% vs. 7%</td>
</tr>
<tr>
<td>Moholdt et al. (2012)</td>
<td>35/72</td>
<td>F: 3 × week (2 × hospital + 1 × home) D: 12 weeks</td>
<td>I: 4 × 4 min at 85–95% HR\textsubscript{peak} Rec: 3 × 70% HR D: 38 min</td>
<td>I: NS D: 35 min</td>
<td>0/0</td>
<td>HIIT: 1 low adherence, 1 pancreatitis, 1 angina, 1 claudication and 1 gastroenteritis CAET: 7 low adherence, 1 gastrointestinal bleeding, 1 angina, 1 bronchitis, 1 knee surgery, 1 low-back pain and 1 psychiatric disease Compliancee: HIIT: 20.4 ± 5.0 sessions; CAET: 19.1 ± 4.0 sessions</td>
<td>VO\textsubscript{2peak}: 15% vs. 8%</td>
</tr>
<tr>
<td>Rocco et al. (2012)</td>
<td>17/20</td>
<td>F: 3 × week D: 12 weeks</td>
<td>I: 7 × 3 min at RCP Rec: 7 × 3 min at VAT D: 47 min</td>
<td>I: VAT D: 50 min</td>
<td>NS</td>
<td>Compliance: data not shown</td>
<td>VO\textsubscript{2peak}: 25% vs. 23% AT: 14% vs. 20%</td>
</tr>
<tr>
<td>Currie et al. (2013)</td>
<td>Total: 23</td>
<td>F: 2 × week D: 12 weeks</td>
<td>I: 1 min 80–99% of PPO Rec: 1 min at 10% PPO D: 20 min</td>
<td>I: 55–65% of PPO D: 30–50 min</td>
<td>NS</td>
<td>Total: 9 2 data unusable 3 medication changes 4 withdrawal Compliance per 24 sessions: HIIT: 20 ± 3 sessions CAET: 22 ± 2 sessions No difference between groups</td>
<td>VO\textsubscript{2peak}: 20% vs. 22% AT: 22% vs. 23% No effect on BP</td>
</tr>
<tr>
<td>Keteyian et al. (2014)f</td>
<td>21/18</td>
<td>F: 3 × week D: 10 weeks</td>
<td>I: 4 min at 80–90% HR\textsubscript{R} Rec: 4 × 3 min 60–70% HR\textsubscript{R} D: 31 min</td>
<td>I: 60–80% HR\textsubscript{R} D: 30 min</td>
<td>During training: 1 knee pain (HIIT) 1 leg pain (MICET) No events that required hospitalization during or within 3 h after exercise 6/5</td>
<td>HIIT: 2 lost to follow-up, 2 low-back pain and 2 other medical reasons. CAET: 1 returned to work, 2 lost to follow-up, 1 MI and 1 other medical condition Compliance: HIIT: 71%; CAET: 72%</td>
<td>VO\textsubscript{2peak}: 16% vs. 8% AT: 21% vs. 5% No effect on BP</td>
</tr>
<tr>
<td>Author (year)</td>
<td>No. of randomized patients (HIIT/CAET)</td>
<td>Intervention (frequency/duration)</td>
<td>HIIT (intensity/duration)</td>
<td>CAET (intensity/duration)</td>
<td>Cardiovascular AEs (HIIT/CAET)</td>
<td>Other AEs, dropouts/losses and compliance (HIIT/CAET)</td>
<td>Delta of main effects (HIIT vs. CAET)</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---------------------------------------</td>
<td>----------------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>-------------------------------</td>
<td>--</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Madssen et al. (2014)</td>
<td>19/22</td>
<td>F: 3 × week D: 12 weeks</td>
<td>I: 4 × 4 min at 85–95% HR peak Rec: 3 min at 70% HR peak D: 28 min</td>
<td>I: 60% on HRpeak D: 46 min</td>
<td>HIIT: cerebral hemorrhage</td>
<td>4/1</td>
<td>VO₂peak: 11% vs. 7%^</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HITT: 2 missing data 1 pneumonia 1 cerebral hemorrhage CAET: 1 withdrawal Total compliance: more than 90% 2/2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HITT: Knee pain Return to work CAET: 2 did not complete the follow-up evaluations Compliance: NS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kim et al. (2015)</td>
<td>16/16</td>
<td>F: 3 × week D: 6 weeks</td>
<td>I: 4 × 4 min at 85–95% HRR Rec: 3 × 3 min 50–70% of HRR D: 25 min</td>
<td>I: 70–85% HRR D: 25 min</td>
<td>0/0</td>
<td>HITT: Knee pain Return to work CAET: 2 did not complete the follow-up evaluations Compliance: NS</td>
<td>VO₂peak: 22% vs. 9%^</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardozo et al. (2015)</td>
<td>24/24</td>
<td>F: 3 × week D: 16 weeks</td>
<td>I: 2 min at 90% HRpeak Rec: 2 min at 60% HRpeak D: 30 min</td>
<td>I: 70–75% HR peak D: 30 min</td>
<td>0/0</td>
<td>Compliance: NS</td>
<td>VO₂peak: 18% vs. 0.5% AT 12% vs. –3% No effect on BP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conraads et al. (2015)</td>
<td>110/100</td>
<td>F: 3 × week D: 12 weeks</td>
<td>I: 4 × 90–95% HR peak Rec: 3 × 50–70% HR peak D: 38 min</td>
<td>I: 70–75% HR peak D: 37 min</td>
<td>No AEs during training sessions CAET: 1 AMI, after the last training (PCI was performed); 2 significant ST-depression during the exercise test at 6 weeks (2 PCI performed)</td>
<td>15/11</td>
<td></td>
</tr>
</tbody>
</table>

HIIT: high-intensity interval training; CAET: continuous aerobic exercise training; I: intensity; F: frequency; D: duration; AE: adverse event; BP: blood pressure; AT: anaerobic threshold; RCP: respiratory compensatory point; PCI: percutaneous coronary intervention; MI: myocardial infarction; NS: data not shown.

* All patients were previously in a rehabilitation program for 2 weeks and attended 2 × week educational classes.
* Calculated from medians.
* Calculated from the study graph.
* Data not specified in the study if it was for 24 sessions (hospital-based) or for total sessions (36 sessions).
physiological responses in 4 protocols (short interval duration: 15 s vs. medium interval duration: 1 min). The optimal protocol involved 15 s exercise intervals at peak power interspersed with passive recovery intervals of the same duration [23,25]. Compared with CAET, this optimized HIIT protocol was associated with lower mean VO2, lower ventilation, lower rate of perceived exertion and higher exercise session compliance and was preferred by patients. As well, this HIIT protocol had a lower main exercise time (20 vs. 28.7 min) with the same total energy expenditure (670 kJ) as CAET [23,26]. Thus, HIIT with short intervals is well tolerated by CHD patients, is safe and produces similar physiological responses as CAET [22,23], for possibly improved adherence to exercise training. This form of HIIT may be well suited for improvement and maintenance stages (see Table 1) as an efficient alternative or as a substitute for continuous CAET for CHD patients [22,23].

3.2. HIIT with medium to long intervals

Other medium to long HIIT protocols have been employed in the literature previously with length stages from 1 to 4 min (80% to 145% PPO) and involved mainly low-intensity active recovery (10% PPO to 70% HRmax) [27–33] with a close work/recovery ratio (see review [23] for details). Although as effective or even superior to CAET (see the Section 3.1), these HIIT protocols may have some limitations and most importantly were chosen arbitrarily [22,34]. Indeed, our previous work demonstrated that longer-stage HIIT protocols with active recovery had higher medium intensity (% VO2peak), were less tolerated (higher RPE) and were associated with lower exercise session compliance for CHD patients [22,23,25]. Therefore, the use of those protocols should be proposed for the most fit patients or those with less cardiac risk when used very soon in the improvement stage of training. They may be more appropriate for the improvement stage for patients who are less fit and/or at a higher risk, after a certain period of CAET and/or short interval HIIT sessions with passive recovery [22,23]. Finally, those HIIT protocols may be of use in the maintenance stage because of their high physiological stimulus (e.g., 2 times a week); indeed, they were found feasible in a home-based program for CHD patients [35–38] (see Section 4).

4. Home-based HIIT

CAET has been widely studied in the long-term maintenance phase and in home-based settings for CHD patients [13], but less is known about HIIT used for this purpose. Previous study in CHD patients reported improved or similar exercise adherence after a cardiac rehabilitation program with HIIT as compared to CAET, with superior or similar long-term effects on VO2peak and self-reported physical activity [37,38]. More recently, one study compared 3 different HIIT programs (12 weeks) for CHD patients, one home-based [35]:

- a treadmill HIIT (hospital-based);
- a multi-modality HIIT (hospital-based);
- a home-based HIIT.

This phase II home-based HIIT program was as efficient in terms of targeted exercise intensity, exercise adherence and VO2peak increase [35]. The same authors reported the long-term effects (1 year) of home- versus hospital-based HIIT for CHD patients and found that home-based HIIT provided similar long-term exercise adherence (no differences in total time physical activity expended in moderate or vigorous intensity measured by accelerometer) and improved VO2peak [36]. Thus, home-based HIIT may be as efficient as hospital-based CAET and/or HIIT programs for CHD patients.

5. HIIT versus CAET programs

VO2peak consistently shows greater improvement in HIIT than CAET studies [39]. The most recent meta-analysis evaluating the effects of HIIT and CAET on VO2peak included 8 studies of CHD patients (n = 439) and 4 studies of heart-failure patients (n = 58) [40–42]. To our knowledge, 4 different meta-analyses were conducted, with different combinations of studies; the results showed a summarized weighted mean difference of 1.78 [95% CI: 0.45, 3.11] [42], 1.60 [0.18, 3.02] [40] and 1.53 [0.84, 2.23] [41] in VO2peak that favoured HIIT programs. These effects are not exclusive to CHD patients; the authors of the first 2 meta-analysis also included studies with heart-failure patients [40,42]. For other secondary outcomes, results were more conflicting. HIIT showed superior effects to CAET for VO2 at anaerobic threshold in one meta-analysis [41] and no significant difference in a second [40]. HIIT and CAET programs were similar for systolic blood pressure, body mass and VE/VO2 [40–42]. For other outcomes such as BMI and resting HR, CAET had superior effects compared to HIIT [42].

To evaluate the benefits of HIIT programs exclusively in CHD patients, we reviewed protocols from randomized clinical trials that compared HIIT and CAET for at least 4 weeks of training, with no distinction in weekly frequency. The 11 studies are described in Table 2. Some were already included in the previous meta-analysis and represented part of the summarized effects, but some recent ones were not included [43–45]. From all reviewed studies, 4 showed a superior effect of HIIT over CAET on VO2peak and prescribed long intervals (4-min intervals at 80–95% HRpeak) [29,45–47]. Similar benefits were found for HIIT versus CAET for VE/VO2 slope, oxygen uptake efficiency slope [43], partial pressure of end-tidal CO2 [48], coronary atheroma and plaque characteristics [44] and quality of life [49]. Furthermore, some studies evaluated HIIT versus CAET for effects on blood pressure [43,44,50–52], HR recovery and HR variability [51] as well as systolic function and systolic volumes [29,49] and found no effects of training on these variables. Finally, CAET seemed to confer better improvement in endothelial function as compared with HIIT [52]. CHD patients may benefit from a combination of aerobic exercise training (HIIT and CAET), depending on the main goals of the exercise programs.

6. Safety aspects and risk classification for HIIT prescription for CHD patients

The clinical status and functional capacity are considered in prescribing any exercise program for cardiac patients [16] (see Table 3 for absolute contra-indications). Especially in CHD patients, the clinical status and functional capacity are considered in prescribing any exercise program for cardiac patients [16] (see Table 3 for absolute contra-indications). Especially in CHD patients,
symptoms such as angina, exercise intolerance and functional status, in addition to ischemia and arrhythmias during exercise, must be highly considered before prescribing an HIIT program, but there is no evidence that patients with cardiac risk classes B and C should avoid HIIT [16,53]. A study comparing cardiovascular risk in HIIT and CAET that analysed 175,820 training hours showed the risk of a cardiovascular event very low for both modalities [50].

In evaluating adverse events during HIIT programs, most of the authors in our review accounted for cardiovascular events (all-cause mortality, hospitalization for cardiovascular disease, atrial tachycardia, atrial fibrillation or frequent ventricular arrhythmias). Altogether, the 11 studies trained 631 stable CHD patients with no major cardiovascular events during the training period, with the exception of a cerebral hemorrhage in one HIIT group [44] and 2 myocardial infarctions in CAET programs [47,52]. These 3 adverse cardiovascular events were not clearly related to the exercise training and could be better described by authors to determine causality of adverse events of exercise programs in the future. Additionally, 2 patients showed angina and discontinued the programs (1 HIIT and 1 CAET) [29]. No arrhythmia events were described at any study. Therefore, HIIT seems to be a safe exercise modality and did not differ in frequency or magnitude of cardiovascular adverse events during exercise training as compared with CAET, as was shown previously [50].

7. Future perspectives: periodization models for HIIT in CHD patients

In this section, we develop the concept of progression principles and theoretical models of periodization applied to HIIT for CHD patients based on recent literature. The main progression principles for exercise training are progressive overload, specificity and periodization (variation), mostly applied previously in healthy populations (see reviews [54–57] for details). Periodization is defined by the variation in principal elements of an exercise training program such as intensity, duration and frequency (session/week) [54–57]. In healthy subjects, periodization aims to optimize exercise training adaptations as compared with non-periodized training (NPT), to prevent overtraining and to avoid plateauning of training adaptations [54–57]. The classical approach to periodization is linear periodized training (LPT), consisting of an initial high volume and low-intensity. As exercise training progresses, the intensity is increased and the volume is decreased (reduced duration and/or frequency) [54]. This linear model appears in exercise training guidelines for cardiac patients [13,58] but has never been compared to NPT in this population. LPT has superior benefits for aerobic power and muscle function as compared with NPT in healthy subjects or athletes [54,55]. As well, LPT was superior to NPT for certain cardiometabolic risk factors in obese adolescents [59]. According to the progressive overload principle, body adaptations depend on exercise stress and the principle is highlighted by the super-compensation phase of physical adaptations in response to a stressor [54]. However, if this stress continues at the same level for an extended period, the body may enter a phase of maladaptation or exhaustion [54,56]. Because exercise intensity and volume reduction cannot be increased definitively, other periodization models such as the non-linear periodized training (NLPT) have been studied in healthy [54,60,61] and clinical populations [59,62,63]. NLPT is characterized by a type of periodization in which training intensity, duration, and repetition-volume are altered frequently. In patients with chronic obstructive pulmonary disease, improvements in aerobic endurance (+125%), maximal strength (leg press +25%), and quality of life (48–96%; for different scores) were greater with NLPT than LPT [62]. In overweight subjects, improvements in insulin resistance and muscular strength were greater with NLPT than NPT [63]. However, which exercise training program components such as frequency, intensity, time (duration) and type (FITT), and their combination [13], are the most efficient to optimize cardiovascular adaptations to exercise training for CHD patients remain unclear.

More research is needed on HIIT protocols and their use into optimal exercise training programs, such as testing different individualized progressive models with HIIT (short, medium and long intervals) to optimize training adaptations in CHD patients. In addition, short interval HIIT has not been assessed in home-based and/or community settings for cardiac patients. As well, no studies have compared different HIIT protocols (e.g., short vs. long intervals) for their cardiovascular effects, adherence, safety and tolerance/preferences for cardiac patients. In this context, the study of LPT and/or NLPT for HIIT as compared to more traditional NPT methods (CAET and/or HIIT) is a promising area of research. Moreover, the effects of high-intensity interval training on morbidity and mortality were never tested. The dose–response effect is recurrently discussed concerning the total amount of weekly physical activity (time and metabolic equivalents), but there is no evidence for exercise intensities, for example [11]. Since the time spent in physical activity is still an important barrier to exercise adherence in cardiovascular rehabilitation programs, documenting whether similar cardiovascular benefits could be obtained with programs involving higher-intensity exercise and lower total weekly exercise volume would be of interest [13,36].

8. Conclusions

For CHD patients, HIIT showed greater or equivalent benefits as compared with CAET for most of the parameters reviewed. The use of HIIT does not seem to decrease exercise compliance or increase cardiovascular events (when properly prescribed) and is well tolerated and appreciated by the patients. We question why HIIT is still not yet a standard for exercise training (at least in partial substitution of CAET) in clinical routine practice for stable CHD patients. For example, HIIT could be a good modality when patients are transferred home and/or to community-based programs because of its superior benefits for V̇O₂peak time efficiency, equivalent adherence and patient preference. HIIT should now become systematically integrated in cardiac rehabilitation programs for all cardiac patients, while reinforcing existing evidence on long-term safety and efficacy of this training modality.

Disclosure of interest

The authors declare that they have no competing interest.

Acknowledgements

This study was financially supported by the ÉPIC Foundation, Montreal Heart Institute Foundation and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico–Brazil).

References

